Analysis-driven Engineering of Comparison-based Sorting Algorithms on GPUs

32nd ACM International Conference on Supercomputing · June 17, 2018

Ben Karsin¹ · karsin@hawaii.edu
Volker Weichert² · weichert@cs.uni-frankfurt.de
Henri Casanova¹ · henric@hawaii.edu
John Iacono³ · john.iacono@ulb.ac.be
Nodari Sitchinava¹ · nodari@hawaii.edu

¹Department of ICS, University of Hawaii at Manoa
²Goethe University Frankfurt
³Département d’Informatique, Université Libre de Bruxelles

Work supported by the National Science Foundation under grants 1533823 and 1745331
Sorting: A fundamental problem

- Sorting is a building block
 - Used by countless algorithms...
Sorting: A fundamental problem

- Sorting is a building block
 - Used by countless algorithms...

\[O(N) \]

\[O(\log N) \]
Sorting: A fundamental problem

- Sorting is a building block
 - Used by countless algorithms...
Sorting: A fundamental problem

- Sorting is a building block
 - Used by countless algorithms...
Sorting: A fundamental problem

- Sorting is a building block
 - Used by countless algorithms...

- Many solutions

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Stable?</th>
<th>Inplace?</th>
<th>Growth rate to sort N items</th>
<th>Extra space</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection sort</td>
<td>no</td>
<td>yes</td>
<td>N^2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>insertion sort</td>
<td>yes</td>
<td>yes</td>
<td>between N and N^2</td>
<td>1</td>
<td>depends on order of input keys</td>
</tr>
<tr>
<td>shellsort</td>
<td>no</td>
<td>yes</td>
<td>$N^{6/5}$?</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>quicksort</td>
<td>no</td>
<td>yes</td>
<td>$N \lg N$</td>
<td>$\lg N$</td>
<td>probabilistic guarantees, depend on distribution of input key values</td>
</tr>
<tr>
<td>3-way quicksort</td>
<td>no</td>
<td>yes</td>
<td>between N and $N \lg N$</td>
<td>$\lg N$</td>
<td></td>
</tr>
<tr>
<td>mergesort</td>
<td>yes</td>
<td>no</td>
<td>$N \lg N$</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>heapsort</td>
<td>no</td>
<td>yes</td>
<td>$N \lg N$</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Graphics Processing Units

- Designed for **high throughput**
- Extremely Parallel
 - Thousands of cores
- Huge performance potential
 - Lots of **application** research
 - No standard performance model
NVIDIA GPU

- Streaming Multiprocessors (SMs)
 - < 20 per GPU
 - < 200 cores each
NVIDIA GPU

- Streaming Multiprocessors (SMs)
 - < 20 per GPU
 - < 200 cores each

- Memory Hierarchy
 - User-controlled
 - Different scope
NVIDIA GPU

- Streaming Multiprocessors (SMs)
 - < 20 per GPU
 - < 200 cores each

- Memory Hierarchy
 - User-controlled
 - Different scope

- Thread organization
 - Cores share logic

- Need lots of parallelism!
Thread Organization

[Diagram of GPU architecture showing SMs and global memory]

Ben Karsin – A Performance Model for GPU Architectures
Thread Organization

- Threads are grouped into *thread-blocks*
 - b threads
 - Run on the SM
- Threads are grouped into *thread-blocks*
 - b threads
 - Run on the SM
- Groups of $w = 32$ form a *warp*
 - execute in ‘SIMT’ lockstep
Memory Hierarchy

- 3 levels with different:
 - Access scope
 - Capacity
 - Access pattern
 - Latency
 - Peak bandwidth
Global Memory

- Large (up to 32 GB)
- Shared by all threads
- Slow
- “Blocked” accesses
 - I/O model
Global Memory Access Pattern

- **Warp** - 32 threads execute in lockstep
 - Access global memory together

- Warp is a single unit
- 1 operation accesses 32 elements
- Just like disk accesses in ’I/O’ model ($B = 32$)
Shared Memory

- Small (48-64 KB per SM)
- Private to SM
 - User defines sharing
- 5 – 10 × faster
- Unique access pattern
 - organized into banks
Shared Memory Access Pattern

- Stored across w memory banks

```
A
```

```
Bank 1
Bank 2
Bank 3
Bank 4
```
Shared Memory Access Pattern

- Separate banks accessed concurrently

Shared memory

<table>
<thead>
<tr>
<th>Bank 1</th>
<th>Bank 2</th>
<th>Bank 3</th>
<th>Bank 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>
Shared Memory Access Pattern

- Threads accessing same bank = Bank conflict
- Serialize access

![Shared Memory Access Pattern Diagram](image)

<table>
<thead>
<tr>
<th>Bank 1</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Registers

- Small (255 per thread)
- Private to thread
- Fastest
- Random access
- Must be “static”
 - known at compile time
Talk Outline

- Motivation/background
- GPU overview
 - Memory hierarchy
- State-of-the-art GPU sorting
- Our multiway mergesort (GPU-MMS)
 - Optimizations
- Performance results
- Conclusions & future work
State-of-the-art GPU sorting

- Modern GPU (MGPU)
 - Pairwise mergesort

- CUB
 - Radix sort
 - Limited application

- Thrust
 - Changes algorithm based on input type
 - Comes with CUDA compiler

- All highly engineered and optimized for hardware
- Change parameters based on hardware detected
MGPU mergesort

- Pairwise mergesort
- E elements per thread
MGPU mergesort

- Pairwise mergesort
- \(E \) elements per thread
- \(b \) threads per thread-block
MGPU mergesort

- Pairwise mergesort
- E elements per thread
- b threads per thread-block
- Lots of parallelism
 - $\frac{N}{E}$ threads!
MGPU mergesort

- Each thread-block sorts bE elements
MGPU mergesort

- Each thread-block sorts bE elements
- Merge pairs of lists
MGPU mergesort

- Each thread-block sorts bE elements
- Merge pairs of lists
- $\left\lceil \log \frac{N}{bE} \right\rceil$ merge rounds
 - b and E iare small constants
MGPU bottlenecks

- Global memory is the main bottleneck
- Unavoidable: $O(\log_2 N)$ merge rounds
Multiway mergesort

- Reduce global memory bottleneck
 - Merge K lists at a time!

\[\lceil \log_2 \frac{N}{B} \rceil \text{ merge rounds} \]

- Merging done in internal memory
 - Use a priority queue

\[\log_2 \frac{N}{B} \text{ merge rounds} \]
Merging K lists

- Use a heap
- Load blocks from each list
- Build min-heap on smallest items

```
1
  /\  \
 3 6
 / \ / \ \
7 4 8 7
  / \ / \ \
8 9 6 11
 / \  / \
9 11 12 19
 /   /   \
16 8 13 16
```

K
Merging K lists

- Use a heap
- Buffer smallest item
- Heapify to find next smallest

Diagram:

```
        3
       / \  
      4   6
     / \  / \
   7   5 8
  / \ / \ / \ 
8 9 6 8 10 14
11 7 7 11 12 19
16   13 22 18
   K
   1
```
Merging K lists

- Use a heap
- Output buffer when full
- Read block when needed
Parallel ’Block Heap’

- Warp shares a heap
- 32 threads all need work...

```
32
K
```
Parallel 'Block Heap'

- Each node has a sorted list
Parallel ’Block Heap’

- Each node has a sorted list
Parallel 'Block Heap'

- Each node has a sorted list
- Merge child nodes
 - All 32 threads work together
Parallel 'Block Heap'

- Each node has a sorted list
- Merge child nodes

```
  7 8 9 11
 /   \   /
/     \ / \
19 22 23 30 18 20 21 24 28 29 31 33 23 24 25 26
```

Smallest: 7
Largest: 33
Parallel ’Block Heap’

- Each node has a sorted list
- Merge child nodes
- Repeat on empty child

![Block Heap Diagram]

Ben Karsin – A Performance Model for GPU Architectures
Multiway mergesort (GPU-MMS) analysis

- Base case sorts w^2 elements
- Merge groups of K lists per round
 - $\lceil \log_K \frac{N}{w^2} \rceil$ rounds
- No bank conflicts
- Perform merging of nodes in registers
Multiway mergesort (GPU-MMS) analysis

- Base case sorts w^2 elements
- Merge groups of K lists per round
 - $\lceil \log_K \frac{N}{w^2} \rceil$ rounds
- No bank conflicts
- Perform merging of nodes in registers
- Not work-efficient
 - $\log w$ more register accesses
Multiway mergesort (GPU-MMS) analysis

- Base case sorts w^2 elements
- Merge groups of K lists per round
 - $\lceil \log_K \frac{N}{w^2} \rceil$ rounds
- No bank conflicts
- Perform merging of nodes in registers
- Not work-efficient
 - $\log w$ more register accesses
- Low parallelism
 - Lots of shared memory used
 - Dependent operations
Pipelining merge steps

- Pre-search path to leaf
- Identify all nodes to be merged
Pipelining merge steps

- Pre-search path to leaf
- Identify all nodes to be merged

Output

Merge

1 2 4 5

7 9 11 17

19 22 23 30

18 20 21 24

28 29 31 33

23 24 25 26
Tuning K

- Small K: too many global memory access
- Large K: not enough parallelism
Sorting Performance

- Sorting integers on Maxwell GPU
Impact of Bank Conflicts

- Generate input that causes bank conflicts
 - GPU-MMS is unaffected
Different datatypes

- Increasing comparison work degrades performance
Conclusions

- Analysis helps us develop better GPU algorithms
- I/O-efficient techniques work well
 - Minimize global memory accesses
 - Don’t forget parallelism
Conclusions

- Analysis helps us develop better GPU algorithms
- I/O-efficient techniques work well
 - Minimize global memory accesses
 - Don’t forget parallelism

Future work

- Optimize GPU-MMS
 - Work efficient (open problem)
- Apply analysis methods to other algorithms
- How will future architectures change things?
Conclusions

- Analysis helps us develop better GPU algorithms
- I/O-efficient techniques work well
 - Minimize global memory accesses
 - Don’t forget parallelism
- Future work
 - Optimize GPU-MMS
 - Work efficient (open problem)
 - Apply analysis methods to other algorithms
 - How will future architectures change things?

Thank You!

GPU-MMS available: https://github.com/algoparc/GPU-MMS
Backup Slides
MGPU Merge phase

- Merge pairs of lists
 - Repeat until sorted
MGPU Merge phase

- Merge pairs of lists
 - Repeat until sorted
- Find thread-block partition
MGPU Merge phase

- Merge pairs of lists
 - Repeat until sorted
- Find thread-block partition
- Each thread-block loads partition into shared memory
MGPU Merge phase

- Merge pairs of lists
 - Repeat until sorted
- Find thread-block partition
- Each thread-block loads partition into shared memory
- And merges...

TB1

TB2

TB3

TB4

...
GPU-MMS Bottlenecks

- Mostly compute-bound

![Graph showing GPU-MMS performance bottlenecks]

- GMEM
- SMEM
- Sync
- Basecase
- Registers
Searching in global memory
Model results: MGPU mergesort

- Model is quite accurate!
- Shows that $E = 31$ is ideal for this GPU!
 - $(E = 15$ is hard-coded)
Hiding Latency

- t_x: average time per x operation
 - Min $t_x \rightarrow$ max throughput
- But operations have latency...
Hiding Latency

- t_x: average time per x operation
 - $\min t_x \rightarrow \max$ throughput
- But operations have latency...
- Multiplicity: \mathcal{X}
 - multiple threads per core

![Diagram showing core, threads, and memory with arrows indicating data flow.](image-url)
Hiding Latency

- t_x: average time per x operation
 - min $t_x \rightarrow$ max throughput
- But operations have latency...
- Multiplicity: \mathcal{X}
 - multiple threads per core

thread sends request to slow memory

![Diagram showing a core with multiple threads requesting memory](image_url)
Hiding Latency

- t_x: average time per x operation
 - min $t_x \rightarrow$ max throughput
- But operations have latency...
- Multiplicity: \mathcal{X}
 - multiple threads per core

switch out thread while it waits

```
threads

core

request

Memory
```
Hiding Latency

- t_x: average time per x operation
 - min $t_x \rightarrow$ max throughput
- But operations have latency...
- Multiplicity: λ
 - multiple threads per core

schedule new thread to use core

threads

core

request

Memory
Hiding Latency

- t_x: average time per x operation
 - $\min t_x \rightarrow \max$ throughput

- But operations have latency...

- Multiplicity: λ
 - multiple threads per core

issue more requests to saturate bandwidth

Ben Karsin – A Performance Model for GPU Architectures
Hiding Latency

- t_x: average time per x operation
 - min $t_x \rightarrow$ max throughput
- But operations have latency...
- Instruction-level parallelism (ILP): \mathcal{I}
 - consecutive independent instructions
Hiding Latency

- t_x: average time per x operation
 - min $t_x \rightarrow$ max throughput
- But operations have latency...
- Instruction-level parallelism (ILP): \mathcal{I}
 - consecutive independent instructions

thread requests memory element X
Hiding Latency

- \(t_x \): average time per \(x \) operation
 - \(\min t_x \rightarrow \text{max throughput} \)
- But operations have latency...
- Instruction-level parallelism (ILP): \(\mathcal{I} \)
 - consecutive independent instructions

next instruction requests \(Y \)

[Diagram showing a core requests \(X \) from memory]

Ben Karsin – A Performance Model for GPU Architectures
Hiding Latency

- t_x: average time per x operation
 - $\min t_x \rightarrow \text{max throughput}$
- But operations have latency...
- Instruction-level parallelism (ILP): I
 - consecutive independent instructions

issue next request without waiting for X

![Diagram showing core, request Y, request X, and Memory]
Hiding Latency

- t_x: average time per x operation
 - $\min t_x \rightarrow \max$ throughput
- But operations have latency...
- Instruction-level parallelism (ILP): \mathcal{I}
 - consecutive independent instructions

issue more requests to saturate bandwidth
Impact of \mathcal{X} and \mathcal{I} (global memory)

- Copy 2^{16} elts. in global memory *per thread*
- When $\mathcal{X} \cdot \mathcal{I} \geq 8$ is limited by bandwidth
Impact of \mathcal{X} and \mathcal{I} (global memory)

- Copy 2^{16} elts. in global memory *per thread*
- When $\mathcal{X} \cdot \mathcal{I} \geq 8$ is limited by bandwidth

![Graph showing the relationship between \mathcal{X} (threads per core) and Average Runtime (ms) for different values of \mathcal{I}.

- $\mathcal{I} = 1$ (solid blue line)
- $\mathcal{I} = 2$ (dotted red line)
- $\mathcal{I} = 4$ (dashed yellow line)
- $\mathcal{I} = 8$ (solid green line)
- $\mathcal{I} = 16$ (dotted purple line)

The graph illustrates the average runtime in milliseconds for different values of \mathcal{X} and \mathcal{I}, with a notable point at $\mathcal{X} \cdot \mathcal{I} = 8 \cdot 1$.

Ben Karsin – A Performance Model for GPU Architectures
Impact of λ and I (global memory)

- Copy 2^{16} elts. in global memory *per thread*
- When $\lambda \cdot I \geq 8$ is limited by bandwidth

![Graph showing the impact of λ and I](image)

- $\lambda \cdot I = 8 \cdot 1$
- $\lambda \cdot I = 4 \cdot 2$
Impact of \mathcal{X} and \mathcal{I} (global memory)

- Copy 2^{16} elts. in global memory *per thread*
- When $\mathcal{X} \cdot \mathcal{I} \geq 8$ is limited by bandwidth

![Graph showing the impact of \mathcal{X} and \mathcal{I} on average runtime.](image)
Time per memory access

- Increasing \((X \cdot I)\):
 - Reduce latency
 - Until peak bandwidth reached

- Parameters for each type of memory:
 - \(L_x\) - memory access latency (clock cycles)
 - \(B_x\) - peak bandwidth
 - peak operations per clock cycle, per core

- Reduce latency until bandwidth reached:

\[
t_x = \max \left(\frac{1}{B_x}, \left\lceil \frac{L_x}{X \cdot I} \right\rceil \right)
\]
GPU Hardware Parameters

- Run benchmarks on 3 architectures
 - **ALGOPARC**: server in our lab
 - **GIBSON**: desktop with GPU
 - **UHHPC**: GPU node of UH cluster

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ALGOPARC</th>
<th>GIBSON</th>
<th>UHHPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA GPU</td>
<td>Quadro M4000</td>
<td>GTX 770</td>
<td>K40</td>
</tr>
<tr>
<td>P (total cores)</td>
<td>1664</td>
<td>1536</td>
<td>2880</td>
</tr>
<tr>
<td>L_g</td>
<td>269.5</td>
<td>267.6</td>
<td>291.2</td>
</tr>
<tr>
<td>B_g</td>
<td>0.0301</td>
<td>0.0279</td>
<td>0.0275</td>
</tr>
<tr>
<td>L_s</td>
<td>85.84</td>
<td>123.1</td>
<td>111.9</td>
</tr>
<tr>
<td>B_s</td>
<td>0.233</td>
<td>0.13</td>
<td>0.131</td>
</tr>
<tr>
<td>L_r</td>
<td>6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>B_r</td>
<td>~ 1</td>
<td>~ 1</td>
<td>~ 1</td>
</tr>
</tbody>
</table>